yudho1
17th November 2011, 08:04 AM
Sebelumnya... Ane mengharapkan : :melon: & :rate5
Langsung aja ya... Cekidot :
-TOP 10 STRANGEST THINGS IN THE UNIVERSE-
Quote:
10. Hypervelocity Star ( Bintang super cepat)
http://cdn-u.kaskus.us/32/jghamsox.jpg
Bintang hipercepat (Inggris: hypervelocity star atau HVS) adalah bintang yang bergerak dengan kecepatan ekstrim (lebih dari 1000 km/detik). Bintang-bintang ini dihasilkan oleh sebuah perjumpaan (encounter) dinamik antara bintang ganda dekat dengan lubang hitam di Pusat Galaksi kita. Keberadaan bintang jenis ini pertama kali diformulasikan oleh Jack Hills[1] (1988) sebagai sebuah simulasi teoritik.
Quote:
9. Black Holes ( Lubang Hitam )
http://cdn-u.kaskus.us/32/mrkqauxx.jpg
Lubang hitam adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata �hitam�. Istilah �lubang hitam� telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.
Di pusat galaksi, lubang hitam sekitar 10.000 hingga 18 miliar kali lebih berat daripada matahari diperkirakan ada, diperbesar dengan menelan atas gas, debu, bintang-bintang dan lubang hitam kecil.
Quote:
8. Magnetars
http://cdn-u.kaskus.us/32/m2pck54r.jpg
Sebuah magnetar adalah jenis bintang neutron dengan medan magnet sangat kuat, peluruhan yang kekuatan emisi jumlah berlebihan tinggi energi radiasi elektromagnetik, khususnya sinar-X dan sinar gamma. [1] Teori mengenai objek-objek ini diusulkan oleh Robert Duncan dan Christopher Thompson pada tahun 1992, tetapi tercatat pertama ledakan sinar gamma diduga dari magnetar terdeteksi pada tanggal 5 Maret 1979. [2] Selama dekade berikutnya, maka hipotesis magnetar telah menjadi diterima secara luas sebagai kemungkinan penjelasan untuk soft gamma repeater (SGRs) dan anomali X-ray pulsar (AXPs).
Quote:
7. Neutrinos
http://cdn-u.kaskus.us/32/dsmw85t1.jpg
Neutrino adalah suatu partikel dasar. Neutrino mempunyai spin 1/2 dan oleh sebab itu merupakan fermion. Massanya sangat kecil, walaupun eksperimen yang terbaru (lihat Super-Kamiokande) menunjukkan bahwa massanya ternyata tidak sama dengan nol. Neutrino hanya berinteraksi lewat interaksi lemah dan gravitasi, tak satu pun lewat interaksi kuat atau interaksi elektromagnetik.
Karena dalam proses interaksi lemah, penampang nuklir sangat kecil, neutrino dapat melewati materi nyaris tanpa halangan. Untuk neutrino-neutrino tipikal yang dihasilkan di dalam Matahari (dengan energi beberapa MeV) diperlukan kira-kira satu tahun cahaya (~1016m) timbal untuk memblok setengah dari jumlahnya.
Quote:
Sekitar 150 miliar kecil, hampir partikel tak bermassa yang disebut neutrino saja melewatinya seakan bahkan tidak ada.Para ilmuwan telah menemukan bahwa mereka berasal dari bintang-bintang (hidup atau meledak), bahan nuklir dan dari Big Bang.
Quote:
6. Dark Matter(materi gelap)
http://cdn-u.kaskus.us/32/cjhlzxgk.jpg
Materi gelap adalah materi yang tidak dapat dideteksi dari radiasi yang dipancarkan atau penyerapan radiasi yang datang ke materi tersebut, tetapi kehadirannya dapat dibuktikan dari efek gravitasi materi-materi yang tampak seperti bintang dan galaksi. Perkiraan tentang banyaknya materi di dalam alam semesta berdasarkan efek gravitasi selalu menunjukkan bahwa sebenarnya ada jauh lebih banyak materi daripada materi yang dapat diamati secara langsung. Terlebih lagi, adanya materi gelap dapat menyelesaikan banyak ketidakkonsistenan dalam teori dentuman dahsyat.
Sebagian besar massa di alam semesta dipercaya berada dalam bentuk ini. Menentukan sifat dari materi gelap juga dikenal sebagai masalah materi gelap atau masalah hilangnya massa, dan merupakan salah satu masalah penting dalam kosmologi modern.
Pertanyaan tentang adanya materi gelap mungkin tampak tidak relevan dengan keberadaan kita di bumi. Akan tetapi, ada atau tidaknya materi gelap ini dapat menentukan takdir terakhir dari alam semesta. Kita mengetahui bahwa sekarang alam semesta mengalami pengembangan karena cahaya dari benda langit yang jauh menunjukkan adanya pergeseran merah. Banyaknya materi biasa yang terlihat di alam semesta tidaklah cukup untuk membuat gravitasi menghentikan pengembangan, dan dengan demikian pengembangan akan berlanjut selamanya tanpa adanya materi gelap. Pada prinsipnya, jumlah materi gelap yang cukup di alam semesta dapat menyebabkan pengembangan alam semesta berhenti, atau kebalikannya (yang akhirnya membawa kita pada Big Crunch). Pada prakteknya, sekarang banyak anggapan bahwa gerakan-gerakan alam semesta didominasi oleh komponen lainnya, energi gelap.
Lanjut ke bawah.....
</div>
Langsung aja ya... Cekidot :
-TOP 10 STRANGEST THINGS IN THE UNIVERSE-
Quote:
10. Hypervelocity Star ( Bintang super cepat)
http://cdn-u.kaskus.us/32/jghamsox.jpg
Bintang hipercepat (Inggris: hypervelocity star atau HVS) adalah bintang yang bergerak dengan kecepatan ekstrim (lebih dari 1000 km/detik). Bintang-bintang ini dihasilkan oleh sebuah perjumpaan (encounter) dinamik antara bintang ganda dekat dengan lubang hitam di Pusat Galaksi kita. Keberadaan bintang jenis ini pertama kali diformulasikan oleh Jack Hills[1] (1988) sebagai sebuah simulasi teoritik.
Quote:
9. Black Holes ( Lubang Hitam )
http://cdn-u.kaskus.us/32/mrkqauxx.jpg
Lubang hitam adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata �hitam�. Istilah �lubang hitam� telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.
Di pusat galaksi, lubang hitam sekitar 10.000 hingga 18 miliar kali lebih berat daripada matahari diperkirakan ada, diperbesar dengan menelan atas gas, debu, bintang-bintang dan lubang hitam kecil.
Quote:
8. Magnetars
http://cdn-u.kaskus.us/32/m2pck54r.jpg
Sebuah magnetar adalah jenis bintang neutron dengan medan magnet sangat kuat, peluruhan yang kekuatan emisi jumlah berlebihan tinggi energi radiasi elektromagnetik, khususnya sinar-X dan sinar gamma. [1] Teori mengenai objek-objek ini diusulkan oleh Robert Duncan dan Christopher Thompson pada tahun 1992, tetapi tercatat pertama ledakan sinar gamma diduga dari magnetar terdeteksi pada tanggal 5 Maret 1979. [2] Selama dekade berikutnya, maka hipotesis magnetar telah menjadi diterima secara luas sebagai kemungkinan penjelasan untuk soft gamma repeater (SGRs) dan anomali X-ray pulsar (AXPs).
Quote:
7. Neutrinos
http://cdn-u.kaskus.us/32/dsmw85t1.jpg
Neutrino adalah suatu partikel dasar. Neutrino mempunyai spin 1/2 dan oleh sebab itu merupakan fermion. Massanya sangat kecil, walaupun eksperimen yang terbaru (lihat Super-Kamiokande) menunjukkan bahwa massanya ternyata tidak sama dengan nol. Neutrino hanya berinteraksi lewat interaksi lemah dan gravitasi, tak satu pun lewat interaksi kuat atau interaksi elektromagnetik.
Karena dalam proses interaksi lemah, penampang nuklir sangat kecil, neutrino dapat melewati materi nyaris tanpa halangan. Untuk neutrino-neutrino tipikal yang dihasilkan di dalam Matahari (dengan energi beberapa MeV) diperlukan kira-kira satu tahun cahaya (~1016m) timbal untuk memblok setengah dari jumlahnya.
Quote:
Sekitar 150 miliar kecil, hampir partikel tak bermassa yang disebut neutrino saja melewatinya seakan bahkan tidak ada.Para ilmuwan telah menemukan bahwa mereka berasal dari bintang-bintang (hidup atau meledak), bahan nuklir dan dari Big Bang.
Quote:
6. Dark Matter(materi gelap)
http://cdn-u.kaskus.us/32/cjhlzxgk.jpg
Materi gelap adalah materi yang tidak dapat dideteksi dari radiasi yang dipancarkan atau penyerapan radiasi yang datang ke materi tersebut, tetapi kehadirannya dapat dibuktikan dari efek gravitasi materi-materi yang tampak seperti bintang dan galaksi. Perkiraan tentang banyaknya materi di dalam alam semesta berdasarkan efek gravitasi selalu menunjukkan bahwa sebenarnya ada jauh lebih banyak materi daripada materi yang dapat diamati secara langsung. Terlebih lagi, adanya materi gelap dapat menyelesaikan banyak ketidakkonsistenan dalam teori dentuman dahsyat.
Sebagian besar massa di alam semesta dipercaya berada dalam bentuk ini. Menentukan sifat dari materi gelap juga dikenal sebagai masalah materi gelap atau masalah hilangnya massa, dan merupakan salah satu masalah penting dalam kosmologi modern.
Pertanyaan tentang adanya materi gelap mungkin tampak tidak relevan dengan keberadaan kita di bumi. Akan tetapi, ada atau tidaknya materi gelap ini dapat menentukan takdir terakhir dari alam semesta. Kita mengetahui bahwa sekarang alam semesta mengalami pengembangan karena cahaya dari benda langit yang jauh menunjukkan adanya pergeseran merah. Banyaknya materi biasa yang terlihat di alam semesta tidaklah cukup untuk membuat gravitasi menghentikan pengembangan, dan dengan demikian pengembangan akan berlanjut selamanya tanpa adanya materi gelap. Pada prinsipnya, jumlah materi gelap yang cukup di alam semesta dapat menyebabkan pengembangan alam semesta berhenti, atau kebalikannya (yang akhirnya membawa kita pada Big Crunch). Pada prakteknya, sekarang banyak anggapan bahwa gerakan-gerakan alam semesta didominasi oleh komponen lainnya, energi gelap.
Lanjut ke bawah.....
</div>